Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552513

RESUMEN

Understanding how management influences forage nutritive value and grazer selection within grazing seasons is an ongoing effort for researchers and land managers globally. We used six, 65 ha pastures managed with patch-burn grazing and stocked with either cow-calf pairs (0.45-0.5 ha • AUM-1) or gestating ewes (0.4-0.48 ha • AUM-1) to explore how patterns in rangeland forage drive grazer selection in semi-arid rangeland over four summer grazing seasons at monthly intervals. We used near-infrared spectroscopy to determine nutritive value parameters from monthly forage clippings. We evaluated livestock performance as the average daily weight gains of each animal. We used mixed-effect models and ordination to compare patch and grazer types across the time-since-fire gradient and found that time-since-fire was significant for all measured variables. Cattle and sheep consistently preferred recently burned patches throughout grazing seasons. These recently burned patches typically contained available forage with higher crude protein and moisture content, lower biomass, and lower acid detergent fiber, acid detergent lignin, and neutral detergent fiber compared to intermediate time since fire patches and patches burned three years ago. Differences between patch-burn grazing with cattle and sheep were observed as additional patch contrasts for available biomass and crude protein, but grazer type and ecological site were not statistically significant factors for the nutritive value ordination. Our study indicates that patch-burn grazing is capable of imposing and maintaining heterogeneous, grazer selection, forage biomass, and nutritive value patterns desirable for heterogeneity focused land management, regardless of grazer type. These findings are especially relevant to the northern Great Plains where introduced grasses are homogenizing the structural environment of remaining rangelands. With prescribed fire currently an uncommon practice throughout the region, these findings provide a baseline of expectations for practitioners and land managers implementing patch-burn grazing and illustrate how grazing livestock can benefit from the patch contrast in forage nutritive value and biomass.


Asunto(s)
Detergentes , Poaceae , Animales , Bovinos , Ovinos , Femenino , Biomasa , Ganado , Valor Nutritivo , Estaciones del Año , Alimentación Animal
2.
Ecol Evol ; 12(1): e8396, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35136542

RESUMEN

Land-use and land-cover change associated with agriculture is one of the main drivers of biodiversity loss. In heavily modified agricultural landscapes, grazing lands may be the only areas that can provide essential resources for native grassland species. Management decisions, such as choice of livestock species, affect the extent to which grazing lands provide suitable habitat for native species such as pollinators.Our study compared how sheep versus cattle herbivory affected floral resources and butterfly abundance across low-diversity, former Conservation Reserve Program (CRP) pastures managed with patch-burn grazing.Across all years (2017-2019), flowering species richness and abundance were significantly higher in cattle pastures than sheep pastures. On average, we recorded 6.9 flowering species/transect in cattle pastures and 3.8 flowering species/transect in sheep pastures. The average floral abundance per transect was 1278 stems/transect in cattle pastures and 116 stems/transect in pastures grazed by sheep.Similarly, we observed higher butterfly species richness, diversity, and abundance in cattle than in sheep pastures. In cattle pastures, we observed an average of 75 butterflies and 6.75 species per transect, compared with an average of 52 butterflies and 3.37 species per transect in sheep pastures. However, the butterfly community composition did not significantly differ between grazing treatments likely because agricultural-tolerant, habitat generalists comprised the majority of the butterfly community. Five generalist butterflies comprised 92.3% of observations; Colias philodice was the most abundant (61% of observations). Speyeria idalia and Danaus plexippus, two butterflies of conservation concern, comprised less than 0.5% of butterfly observations.Our results, which are among the first attempt quantifying butterfly use of post-CRP fields grazed by livestock, show that increased precipitation and cattle grazing promoted higher forb abundance and richness. However, additional interventions may be needed to enhance floral resources to sustain and improve pollinator diversity in these landscapes.

3.
Ecol Appl ; 31(7): e02406, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245625

RESUMEN

Within agricultural landscapes, native bees often rely on limited natural and seminatural lands to provide the majority of the food and nesting resources that sustain them. To understand better how management can affect pollinators in these seminatural areas, we compared how sheep or cattle herbivory influenced floral resources and bee communities in low-diversity, former Conservation Reserve Program (CRP) pastures managed with patch-burn grazing. We sampled bee communities and floral resources three times per season in 2017, 2018, and 2019. We used plant-pollinator line transect sampling and collected bees and counted all flowering stems within 1 m. Across all years, we found that floral abundance, floral richness, floral diversity (Simpson's) and bee richness and abundance were significantly higher in cattle pastures compared to sheep. In cattle pastures, 46 native bee species plus honey bees interacted with 25 of 68 available flowering forbs. In sheep pastures, we recorded 14 native bee species and honey bees interacted with 10 of 34 flowering species. Native bee abundance and native bee richness were best explained by models that included an interaction of floral richness and year. Overall, our results suggest that season-long sheep grazing in low-diversity grasslands greatly reduces available floral resources and correlates with much lower bee abundance and native bee diversity. Given the importance of pollinators to natural and agricultural systems, it is imperative that we take proactive actions to increase forb richness and native flower abundance in seminatural lands to maintain a more diverse and resilient bee community that can continue to support pollination services and global food security.


Asunto(s)
Abejas , Flores , Herbivoria , Polinización , Agricultura , Animales , Bovinos , Plantas , Estaciones del Año , Ovinos
4.
Ecol Evol ; 8(11): 5649-5660, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938081

RESUMEN

Ecologists have used Global Positioning Systems (GPS) to track animals for 30 years. Issues today include logging frequency and precision in estimating space use and travel distances, as well as battery life and cost. We developed a low-cost (~US$125), open-source GPS datalogger based on Arduino. To test the system, we collected positions at 20-s intervals for several 1-week durations from cattle and sheep on rangeland in North Dakota. We tested two questions of broad interest to ecologists who use GPS collars to track animal movements: (1) How closely do collared animals cluster in their herd? (2) How well do different logging patterns estimate patch occupancy and total daily distance traveled? Tested logging patterns included regular logging (one position every 5 or 10 min), and burst logging (positions recorded at 20-s intervals for 5 or 10 min per hour followed by a sleep period). Collared sheep within the same pasture spent 75% of daytime periods within 51 m of each other (mean = 42 m); collared cattle were within 111 m (mean = 76 m). In our comparison of how well different logging patterns estimate space use versus constant logging, the proportion of positions recorded in 1- and 16-ha patches differed by 2%-3% for burst logging and 1% for regular logging. Although all logging patterns underestimated total daily distance traveled, underestimations were corrected by multiplying estimations by regression coefficients estimated by maximum likelihood. Burst logging can extend battery life by a factor of 7. We conclude that a minimum of two collars programmed with burst logging robustly estimate patch use and spatial distribution of grazing livestock herds. Research questions that require accurately estimating travel of individual animals, however, are probably best addressed with regular logging intervals and will thus have greater battery demands than spatial occupancy questions across all GPS datalogger systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...